

NAVAL POSTGRADUATE SCHOOL

Optimal Resource Allocation for Preparedness and Recovery of Interdependent Systems

Cameron MacKenzie

Defense Resources Management Institute
Naval Postgraduate School

Monterey, California
WWW.NPS.EDU

Prevention, preparedness, response

WWW.NPS.EDU

2

Research questions

- What is the optimal allocation of resources pre-disruption (prevention and preparedness) and post-disruption (response and recovery)?
- How should resources be allocated among different industries to help those industries recover?

Deepwater Horizon oil spill

WWW.NPS.EDU

Key assumptions

- Objective function minimizes expected economic impact of a disruption
- Preparedness resources reduce chances of disruption
- Response resources reduce economic impact of disruption
 - Allocation to individual industries
 - Allocation to all industries

Impacted area

Texas, Louisiana, Mississippi, Alabama, and Florida

WWW.NPS.EDU

Directly impacted industries

Fishing

Real estate

Amusements

Accommodations

Oil and gas

Resource allocation model

Overall budget

Input parameters for oil spill

Preparedness	$k_p = 0.0031$	$\hat{p} = 0.045$
All industries	$k_{General} = 8.6*10^{-5}$	

Industry	k_i (per \$1 mil)	$\hat{\boldsymbol{c}}_{m{i}}$
Fishing	0.074	0.0084
Real estate	0	0.047
Amusements	0.0038	0.21
Accommodations	0.0027	0.16
Oil and gas	0.0057	0.079

WWW.NPS.EDU

Parameter estimation for fishing

\$62 million lost sales from Gulf Coast fishing

→ 0.84% of region's fishing and forestry production

Studies on food safety and impact of positive media stories

→ \$792,000 to reduce losses by \$40 million

Allocation for prevention

Allocation for response

Sensitivity analysis for prevention

Proportion of \$10B budget allocated for preparedness

Effectiveness of allocating for preparedness k_p

Sensitivity analysis for $g(Z-z_p)$

Increase in regional production for every dollar not spent on prevention

Sensitivity analysis for response

Allocation to all industries

$$z_{General} > 0$$
 if $k_{General} > k^*$

Preliminary conclusions

- Allocating to prevent a disruption may be small compared to allocation to respond
 - Assumptions that prevention reduces chances of disruption
 - Assumption that money not allocated to prevention can increase regional production if no disruption
- Pre-disruption allocation should increase if
 - Preparedness reduces impacts
 - Decision maker is risk averse

Preliminary conclusions

- As budget increases, greater incentive for response allocation to be allocate to benefit all industries versus targeting individual industries
- Future research can include multiple scenarios

Email: camacken@nps.edu